Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microsc Microanal ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38701197

RESUMO

Scanning electron microscopy (SEM) can reveal the ultrastructure of bacterial spores, including morphology, surface features, texture, spore damage, germination, and appendages. Understanding these features can provide a basis for adherence, how physical and environmental stressors affect spore viability, integrity, and functionality, as well as the distribution and function of surface appendages. However, the spore sample preparation method can significantly impact the SEM images' appearance, resolution, and overall quality. In this study, we compare different spore preparation methods to identify optimal approaches for preparation time, spore appearance and resolved features, including the exosporium and spore pili, for SEM imaging. We use Bacillus paranthracis as model species and evaluate the efficacy of preparation protocols using different fixation and drying methods, as well as imaging under room- and cryogenic temperatures. We compare and assess method complexity to the visibility of the spore exosporium and spore appendages across different methods. Additionally, we use Haralick texture features to quantify the differences in spore surface appearance and determine the most suitable method for preserving spore structures and surface features during SEM evaluation. The findings from this study will help establish protocols for preparing bacterial spores for SEM and facilitating accurate and reliable analysis of spores' characteristics.

2.
Plant Cell ; 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36215679

RESUMO

The biopolymer lignin is deposited in the cell walls of vascular cells and is essential for long-distance water conduction and structural support in plants. Different vascular cell types contain distinct and conserved lignin chemistries, each with specific aromatic and aliphatic substitutions. Yet, the biological role of this conserved and specific lignin chemistry in each cell type remains unclear. Here, we investigated the roles of this lignin biochemical specificity for cellular functions by producing single cell analyses for three cell morphotypes of tracheary elements, which all allow sap conduction but differ in their morphology. We determined that specific lignin chemistries accumulate in each cell type. Moreover, lignin accumulated dynamically, increasing in quantity and changing in composition, to alter the cell wall biomechanics during cell maturation. For similar aromatic substitutions, residues with alcohol aliphatic functions increased stiffness whereas aldehydes increased flexibility of the cell wall. Modifying this lignin biochemical specificity and the sequence of its formation impaired the cell wall biomechanics of each morphotype and consequently hindered sap conduction and drought recovery. Together, our results demonstrate that each sap-conducting vascular cell type distinctly controls their lignin biochemistry to adjust their biomechanics and hydraulic properties to face developmental and environmental constraints.

3.
Sci Rep ; 10(1): 8141, 2020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-32424173

RESUMO

Glendonites have been found worldwide in marine sediments from the Neoproterozoic Era to the Quaternary Period. The precursor of glendonite, ikaite (CaCO3 · 6H2O), is metastable and has only been observed in nature at temperatures <7 °C. Therefore, glendonites in the sedimentary record are commonly used as paleotemperature indicators. However, several laboratory experiments have shown that the mineral can nucleate at temperatures>7 °C. Here we investigate the nucleation range for ikaite as a function of temperature and pH. We found that ikaite precipitated at temperatures of at least 35 °C at pH 9.3 -10.3 from a mixture of natural seawater and sodium carbonate rich solution. At pH 9.3, we observed pseudomorphic replacement of ikaite by porous calcite during the duration of the experiment (c. 5 hours). These results imply that ikaite can form at relatively high temperatures but will then be rapidly replaced by a calcite pseudomorph. This finding challenges the use of glendonites as paleotemperature indicators.

4.
BMC Biotechnol ; 19(1): 97, 2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31829176

RESUMO

BACKGROUND: Immunogold labeling in combination with transmission electron microscopy analysis is a technique frequently used to correlate high-resolution morphology studies with detailed information regarding localization of specific antigens. Although powerful, the methodology has limitations and it is frequently difficult to acquire a stringent system where unspecific low-affinity interactions are removed prior to analysis. RESULTS: We here describe a combinatorial strategy where surface plasmon resonance and immunogold labeling are used followed by a direct analysis of the sensor-chip surface by scanning electron microscopy. Using this approach, we have probed the interaction between amyloid-ß fibrils, associated to Alzheimer's disease, and apolipoprotein E, a well-known ligand frequently found co-deposited to the fibrillar form of Aß in vivo. The results display a lateral binding of ApoE along the amyloid fibrils and illustrates how the gold-beads represent a good reporter of the binding. CONCLUSIONS: This approach exposes a technique with generic features which enables both a quantitative and a morphological evaluation of a ligand-receptor based system. The methodology mediates an advantage compared to traditional immunogold labeling since all washing steps can be monitored and where a high stringency can be maintained throughout the experiment.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Apolipoproteínas E/metabolismo , Imuno-Histoquímica/métodos , Microscopia Eletrônica de Varredura/métodos , Ressonância de Plasmônio de Superfície/métodos , Peptídeos beta-Amiloides/química , Apolipoproteínas E/química , Humanos , Ligação Proteica
5.
Chem Commun (Camb) ; 55(34): 5017-5020, 2019 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-30968887

RESUMO

Earth-abundant cobalt-doped hematite thin-film electrocatalysts were explored for acidic water oxidation. The strategically doped hematite produced a stable geometric current density of 10 mA cm-2 for up to 50 h at pH 0.3, as a result of Co-enhanced intrinsic catalytic activity and charge transport properties across the film matrix.

6.
Data Brief ; 19: 1166-1170, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30228999

RESUMO

We demonstrate the use of Scanning Electron microscopy (SEM) in combination with Surface Plasmon Resonance (SPR) to probe and verify the formation of amyloid and its morphology on an SPR chip. SPR is a technique that measures changes in the immobilized weight on the chip surface and is frequently used to probe the formation and biophysical properties of amyloid structures. In this context it is of interest to also monitor the morphology of the formed structures. The SPR chip surface is made of a layer of gold, which represent a suitable material for direct analysis of the surface using SEM. The standard SPR chip used here (CM5-chip, GE Healthcare, Uppsala, Sweden) can easily be disassembled and directly analyzed by SEM. In order to verify the formation of amyloid fibrils in our experimental conditions we analyzed also in-solution produced structures by using Transmission Electron Microscopy (TEM). For further details and experimental findings, please refer to the article published in Journal of Molecular Biology, (Brännström K. et al., 2018) [1].

7.
J Mol Biol ; 430(13): 1940-1949, 2018 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-29751013

RESUMO

Fibril formation of the amyloid-ß peptide (Aß) follows a nucleation-dependent polymerization process and is associated with Alzheimer's disease. Several different lengths of Aß are observed in vivo, but Aß1-40 and Aß1-42 are the dominant forms. The fibril architectures of Aß1-40 and Aß1-42 differ and Aß1-42 assemblies are generally considered more pathogenic. We show here that monomeric Aß1-42 can be cross-templated and incorporated into the ends of Aß1-40 fibrils, while incorporation of Aß1-40 monomers into Aß1-42 fibrils is very poor. We also show that via cross-templating incorporated Aß monomers acquire the properties of the parental fibrils. The suppressed ability of Aß1-40 to incorporate into the ends of Aß1-42 fibrils and the capacity of Aß1-42 monomers to adopt the properties of Aß1-40 fibrils may thus represent two mechanisms reducing the total load of fibrils having the intrinsic, and possibly pathogenic, features of Aß1-42 fibrils in vivo. We also show that the transfer of fibrillar properties is restricted to fibril-end templating and does not apply to cross-nucleation via the recently described path of surface-catalyzed secondary nucleation, which instead generates similar structures to those acquired via de novo primary nucleation in the absence of catalyzing seeds. Taken together these results uncover an intrinsic barrier that prevents Aß1-40 from adopting the fibrillar properties of Aß1-42 and exposes that the transfer of properties between amyloid-ß fibrils are determined by their path of formation.


Assuntos
Peptídeos beta-Amiloides/química , Amiloide/química , Fragmentos de Peptídeos/química , Humanos , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Multimerização Proteica
8.
ChemSusChem ; 10(22): 4544-4551, 2017 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-28980427

RESUMO

Engineering the electronic properties of transition metal phosphides has shown great effectiveness in improving their intrinsic catalytic activity for the hydrogen evolution reaction (HER) in water splitting applications. Herein, we report for the first time, the creation of Fe vacancies as an approach to modulate the electronic structure of iron phosphide (FeP). The Fe vacancies were produced by chemical leaching of Mg that was introduced into FeP as "sacrificial dopant". The obtained Fevacancy-rich FeP nanoparticulate films, which were deposited on Ti foil, show excellent HER activity compared to pristine FeP and Mg-doped FeP, achieving a current density of 10 mA cm-2 at overpotentials of 108 mV in 1 m KOH and 65 mV in 0.5 m H2 SO4 , with a near-100 % Faradaic efficiency. Our theoretical and experimental analyses reveal that the improved HER activity originates from the presence of Fe vacancies, which lead to a synergistic modulation of the structural and electronic properties that result in a near-optimal hydrogen adsorption free energy and enhanced proton trapping. The success in catalytic improvement through the introduction of cationic vacancy defects has not only demonstrated the potential of Fe-vacancy-rich FeP as highly efficient, earth abundant HER catalyst, but also opens up an exciting pathway for activating other promising catalysts for electrochemical water splitting.


Assuntos
Técnicas Eletroquímicas/métodos , Hidrogênio/química , Ferro/química , Água/química , Catálise , Cátions/química , Magnésio/química , Titânio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...